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Radiative effects of fourth-rank SU(N) tensor Higgs fields 

S Meljanact 
Institut fur Physik, Universitat Dortmund, 4600 Dortmund 50, West Germany 

Received 11 October 1985 

Abstract. We investigate the destabilising influence of the self-dual fourth-rank tensor 
scalar fields on the asymptotic freedom in standard SU(N)  gauge theories. In particular, 
we consider the special cases SU(2), SU(3), SU(4) and SU(5) with 5- ,  27-, 20- and 
75-dimensional scalar fields, respectively. We stress the interesting phenomenological 
application of our equations to the model of broken QCD with 27 scalars. 

1. Introduction 

The problem of incorporating scalars in asymptotically free theories was first examined 
by Gross and Wilczek [l]. The effect of the presence of Yukawa couplings on the 
asymptotic freedom of the theory was studied by Cheng er a1 [2] and they also 
investigated the asymptotic stability of the scalar coupling constants in more compli- 
cated cases of reducible representations of scalar fields for SU( N )  and O( N )  groups. 
However, for their purposes and for simplicity, they restricted themselves to cases 
containing at most second-rank tensors. 

In constructing unified models there is no principal reason to restrict representations 
of scalar fields to low-rank tensors only. Indeed, there exist in the literature a number 
of different GUT and SUSY GUT models using higher rank tensors [3,4]. 

Furthermore, in order to account for possibly free fractionally charged particles, 
Slansky er a1 [ 5 ]  have proposed that QCD may be broken to a SO(3) subgroup, with 
SU(3) triplets becoming SO(3) triplets. The breaking can be done with a 27-dimensional 
scalar field. It is interesting to investigate all consequences of such a model: Gluck 
and Reya [6] have shown that very light coloured scalars preserve all presently observed 
short-distance properties of QCD, even for large multiplets of SU(3). However, it is 
expected that a gauge theory containing an elementary scalar field in higher representa- 
tion is not asymptotically free, and therefore the question naturally arises, to which 
extent the evolution of the gauge coupling is disturbed by the destabilising influence 
of quartic couplings Ai. Nevertheless it is also interesting to investigate, on the basis 
of a leading order renormalisation group analysis, whether this model of broken QCD 
can be temporarily free, and thus still compatible with present experiments, as was 
done for some other models of broken QCD [7]. To follow this programme we are 
motivated to construct and study those leading order renormalisation group equations 
(LO RGE) which are needed for studying the asymptotical behaviour of (broken) QCD 

with a 27-dimensional scalar field. 
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The related problem of finding the minima of S U ( N )  invariant potentials with 
self-dual fourth-rank tensor is very complex and has been solved only partially [8,9,12]. 
Abud et a1 [9] have recently found, studying minima of a SU(5) invariant Higgs 
potential with one real 75 representation, a counterexample to Michel's conjecture 
[lo], which reduces possible minima to a class of maximal little (isotropy) groups. 
However, this counterexample is a consequence of a very special relation between 
quartic coupling constants, which is not protected by any kind of symmetry. In the 
case with additional Z, symmetry Cummins and King [ 121 have found stable absolute 
minimum invariant under non-maximal isotropy group. Studying the SU(5) model 
with 75 in more detail it is useful to know appropriate RGE, i.e. one-loop radiative 
Higgs potential. 

The present paper is organised as follows. In 9 2 we present the most general 
potential for self-dual fourth-rank tensors of SU(N)  groups which is given by six 
independent quartic and two cubic invariants. In 9 3 we repeat the general formulae 
for deriving the appropriate coefficients in LO RGE, specifying them for our case in 
which Yukawa couplings are not present. In 9 4 we write explicitly LO RGE for four 
cases: SU(2), SU(3) with symmetric tensors ( 5  and 27, respectively) and SU(4), SU(5) 
with antisymmetric tensors (20 and 75, respectively). Our conclusions are drawn in 
9 5 .  In appendix 1 we give 60 coefficients which enter the RGE for the general case 
and which are sufficient to construct our four special cases. They also provide a 
consistency check of our calculations. In appendix 2 we present all relations between 
quartic invariants for the above four cases and explain their group theoretical origin. 

2. Potential and invariants for scalar fields 

We consider scalar fields transforming as a self-dual fourth-rank tensor under SU( N ) :  
T $ ,  a, p, y,  8 = 1,. . . , N which satisfies the symmetry conditions 

T$ = TT$ = T T $  (2.1) 
where T = +1 corresponds to a tensor symmetric in upper and lower indices; and 
T = - 1  corresponds to a tensor antisymmetric in upper and lower indices; and the 
tracelessness and reality conditions, respectively, are 

This tensor represents an irreducible representation of SU( N )  with dimension 

(2.3) 
The most general renormalisable S U ( N )  invariant potential [8] is given in terms of 
six quartic, two cubic and one quadratic invariants 

T;$ = O  (T$)*  = T $ .  (2.2) 

d (  T )  = $N'( N - T ) (  N +  3 ~ ) .  

5 

V (  T )  = m 2 Q +  c, Cl + c2C2+SAoIo+ Aifi 
i = l  

where 

(2.4) 

(2.5) 
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These invariants are independent [8,11] for 7~ = +1, when N 3 4, and for 7~ = -1 when 
N 3 8. The relations between quartic invariants are explicitly given in appendix 2. 

Though the tensor notations are very convenient for constructing invariants under 
SU( N), they are very clumsy for working out the Feynman rules, because four indices 
are required to label these fields. Thus we make a transformation to a one index 
labelling by writing 

T$ = (B')",4' i =  1 , .  . . , d ( T )  (2.6) 

where ( B ' )  is a set of traceless tensors with the same symmetry properties as T The 
B' are normalised in the following way: 

Tr(B'B') = (B')$(B')$ ='S 2 ij  

41 = 2(B')$T$. (2.8) 

(2.7) 

so we can express the fields 4'  as 

The B' form a complete set of tensors with completeness relation 

where 

(Bo)$ = [ 4 N ( N +  Tr)]-1'2(6;!+ WSps,") 

( Bo ) ;g = [ 4( N + 2 72) 
(2.10) 

[ 6; ( t " ) g + WS? ( t " ) : + 77s; ( t " ) ; + 82 ( t " ) ;] 
and (tu); ( a  = 1, . . . , N 2 -  1) are generators in the fundamental representation. 

Now we can write the potential in terms of the fields 4i 
1 1 1 

2 v(4) =zAjkf&$j#'k4f +g C z j k 4 d j 4 k  +- mz4i4i (2.11) 

where Jjkf, c,jk are totally symmetric. 
Using (2.13) and (2.14) we find the most general quartic scalar coupling vertex 

Ajf;jkl = &( 6$k[ + S,$jl &$jk) + 4A 1 (( Okl) 1 ( ikfi), ( ikjl), + (k - I)] 

+8A2(( i jk l ) ,+( i j lk ) ,+  (ikjl),) 

+ 2A,{[( ijkl), + (ikjl) ,  + (i l jk),  + (kl i j ) ,+ ( jlik)3 + (jkil),] + CC} 

+ 4A4{ [ ( i jkl) ,  + ( ik j l ) ,  + ( i l jk)p + cc} 

+ 2A,{[( ijkl), + (iklj) ,  + (ikjl) ,)  + (k- l ) ]  +cc} (2.12) 

where quartic quantities (ijkZ),, J = 0, . . . , 5 ,  are defined in terms of invariants (2.5), as 

1, = (ijkl)&i4j+k#f (2.13) 
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with the following properties 

(i jkl) ,  = (ij)( k l )  = f s i j s k l  

( i jk l ) ,  = ( jk l i ) ,  = ( lkj i )  f = cyclic permutation 

( i jk l ) ,  = ('jkli), = (Ikji), = cyclic permutation 

(i jkl) ,  = (i j lk),  = (jikl)? 

( i jkl) ,  = ( j i l k ) ,  = ( klji)4 = ( i j lk ) :  

(ij&= ( k l i j ) 5 = ( j i l k ) t .  

The quartic coupling vertex (2.12) can be written symbolically 

Jjkl = 4h0[( ij)( kl)]'3+ 4h , [ (  ijkl),ls6+ 8h2[ ( i jkl)JS3 

+ 2h,[( ijkl),lstz+4A4[( ijkl),lS6+ 2A5[( i jkl)5]Si2 

where Si denotes the sum of i appropriate terms. 
For completeness we also give the cubic scalar vertex 

cijk = 3c,[ ( i j k ) ,  + (jik),] + 6 4  ijk), 

(2.14) 

(2.15) 

(2.16) 

where cubic quantities ( i j k ) , ,  are defined as 

C1.2 = (ijk)I,24&j4k. (2.17) 

( i j k ) ,  is invariant under cyclic permutation, and ( i j k ) ,  is invariant under all permuta- 
tions of i, j ,  k indices. 

3. Renormalisation group equations 

First of all we briefly repeat all starting points necessary for our calculation. Here we 
are interested only in those differential equations for the coupling constants which are 
needed for studying whether gauge theories can be asymptotically (or at least tem- 
porarily) free in the presence of the Higgs phenomenon. 

be the Hermitian gauge fields, real scalar fields and spin-; fields, 
respectively. Here we restrict ourselves to scalar fields +i which transform as a self-dual 
fourth-rank tensoi, and to spin-; fields which transform as a reducible representation 
consisting of Nf fundamental (vector) representations of the SU(N)  group. So the 
most general renormalisable gauge invariant Lagrangian is 

(3.1) 

Let A:, 4i and 

= -'Fa F4.fiv 
4 p u  +mP+),(W4 - V ( 4 ) +  cL(iYPDp - mol4 

where the quartic potential V ( 4 )  is given by (2.11) and (2.12), and where 

FE,,=a,A: -a,A~+gC4bcA~ACy 

( o w 4 ) i  = d w 4 i  -idG)ij4jA; (3.2) 
(op$)a = a w l L a  -ig(tF)aa$,&;. 

Cobc are SU(N)  structure constants and ( tE),a are representation matrices of 
the generators in case of scalar and fermion fields, respectively. 

Note that in our Lagrangian (3.1) there are no Yukawa coupling terms, since the 
product of two fundamental representations contains at most second-rank tensor 
representations. 
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Now specifying the Lagrangian, we write the lowest-order approximation of the 
renormalisation group equations for the gauge and quartic coupling constants, respec- 
tively 

( 3 . 4 )  

where 

(3 .5)  b 
A i j k l  = r ! ) i j { t g ,  f ! ) k l + t ( t g ,  f g ) i k { f g ,  t s b ) j l + { f g ,  t t ) i l { t s " ,  r S ) j k *  

Here we have used the following identities 

( t ; ; t f i )  = C"'(R)U 

Tr( f i r : )  = &(R)S.b (3.6) 

d ( R ) C ' " ( R ) = ( N ' -  l)SZ(R) 

where the index R denotes the representation. 

self-dual fourth-rank 7r symmetric tensor of SU( N )  satisfy 
For fermions one has S,(F)  =iNf, whereas the scalar fields transforming as a 

C"'( T )  = 2( N + 7r) S2(T)=;NZ(N+37T). ( 3 . 7 )  

From (3.3) we find that for 7r = + 1 ,  N 2 6 and 7r = - 1 ,  N 3 9, bo becomes negative. 
Actually the contribution of the scalar field is so large that asymptotic freedom does 
not hold, even when N f S 2  and N f s 4 ,  for 7r=+l  and 7 r =  -1, respectively. 

The representation matrices of generators acting on scalar fields (2.1) are given by 

(3.8) 

where the B i  tensors are defined in (2.6) and (2.7), and ( t u ) ;  are generators in the 
fundamental representation. Using the explicit expression (3.8) we find 

A u k 1  = 16{2[( ij)( kl)ls3+ 2[( ijkl),]"+ 16[( ijkl)JS3 - 4 [ (  i j k l ) 3 ] S l z + f (  N + ~ T ) [ (  ijkl),ls12) 
(3.9) 

where we have used the same notation as for Jjkl in (2.15). 
Since the quartic scalar vertex (2.12) and (2.15) is rather complicated, the calculation 

of appropriate quadratic combinations in (3.4) is very tedious and lengthy. These 
contributions correspond to one-loop vertex corrections containing scalar fields only. 
The general result of this calculation has the following form: 

(3.10) 

where q, r, Z = 0, . . . , 5  and SI denotes symmetrisation of ( i jk l ) ,  term, as defined in 
(2.15). There are 126 a i ,  coefficients to be calculated. In appendix 1 we give only 60 
of them which are sufficient to construct RGE for our four special cases, as well as to 
allow for the consistency check of our calculation. 
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We note that the one-loop radiative correction to the Higgs potential, due to the 
gauge boson, is given by 3/64a4Tr M:In M:, where M: is the gauge boson mass 
matrix. Thus the initial rolling direction of the vacuum, when released from the initial 
symmetric phase, can be found by maximising Tr M t /  Q2. From (2.15) and (3.9) we find 

(3.11) Tr M: = 16g4[ Q2+211 + 8 I2 - 81, + ( N  +4a)15].  

4. Special cases 

There are only a few cases, namely T = + 1 ,  N S 5 and a = - 1 ,  N G 8, in which the 
gauge couplings are still asymptotically free (in the lowest order approximation). Since 
the interesting phenomenological application of the RG equations (3.4) is for SU(3), 
which has four independent quartic invariants, we restrict ourselves to all cases which 
can be described by at most four independent quartic invariants. We choose Io ,  11, 
I2 and I,. 

To construct appropriate RG equations, it is necessary to know the exact relations 
between quartic invariants [ l l ]  which are given in appendix 2. So we present here 
only four special cases for a = + 1 :  SU(2), SU(3), and for T = -1: SU(4), SU(5). 

(i)  SU(2), ~ = + 1 ,  d ( T ) = 5  

Starting from (2.4) and (A2.1), we find for the quartic part of the potential 

V (  4 )  = f( A o +  A ,  + A 2  + A s ) Z o  = $AbZo.  (4.1) 

Using (3.4), (3.7)-(3.10), (4.1) and appendix 1 we find the LO RGE for the scalar quartic 
coupling 

dAb 1 -=- 13 r2 

d t  4 a 2  
(-A0 - 18g2Ab+54g4). 

In terms of the new variable 1 = Ab/g2, (4.2) becomes 

1 d,i 1 
g2 d t  4a2 
- 13-2 - (-A +(fb0-18)1+54) 

where bo is defined by 

(4.2) 

(4.3) 

(4.4) 

It is obvious from (4.3) that for 1 exist no ultraviolet stable fixed point, and so 
asymptotic freedom cannot be maintained for this case. 

(ii) SU(3), T = + I ,  d(T) =27 

Using (2.4) and (A2.2), the quartic part of the potential can be written 

V (  4 )  = ; (Ao+$A3 + A4)10+ ( A ,  -SA,) I1 + ( A 2 +  A4)Z? + (As - 2A4)Z5 

= $ A h l o +  A ;II + A i l 2 +  A i l 5 .  (4.5) 
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Using (3.4), (3.7)-(3.10), (4.5) and the results of appendix 1 we find the LO RGE for 
scalar quartic couplings 

193 117 48 3 
3A&Ai+- A i 2 + -  A i A i + - A : A \ + -  Ah2 

dA; 1 
dt 4x2  50 200 25 100 

19 1 
100 20 

+- A$A\+--A\2-24g2A\+ 12g4 

dAi 1 8 1 8 89 
-=- (3AhAi+- A;’+- A i A b + -  A\A;+-  A’’ 
dt 4x2 25 5 25 40 

14 9 
5 50 

+ - A i A  & +- A i2 - 24g2A’, + 24g4 

dAi 1 229 109 51 
-=- (3AbA;-2A{2+- A{A$+- A‘,A;+-Ah;2 
dt 4x2 25 25 20 

219 293 
50 100 

+ - A LA k +- A k2 - 24g2A\ + 21g4 

and the LO RGE for the gauge coupling constant (3.3): 

(4.6) 

with bo> 0 for NrS 9. 
Using the new set of variables x i  = Ai/g2 and analysing the transformed equations, 

we find that asymptotic freedom cannot be maintained for this case. In fact this was 
expected, since even in the case of SU(3) gauge theory containing one scalar field in 
the adjoint representation, asymptotic freedom is lost. 

(iii) SU(4), 7 ~ =  -1, d(T)=20 

Using (2.4) and (A2.3), the quartic part of the potential can be written 

V( 4) = f( A0 + :A2 + $ A 3  + $ A 4  + $ A 5 )  Io + ( A  -;A2 - f A 3  -3 A4)ZI =;A’& + A’l II . (4.8) 
Using (3.41, (3.7)-(3.10), (4.8) and appendix 1 we find LO RGE for scalar quartic and 
gauge couplings 

(4.9) 

(4.10) 

with bo > 0 for Nr< 20. 
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(iv) SU(5), IT= -1, d(T) = 75 

Using (2.4) and (A2.4), the quartic part of the potential can be written 

V( 4 )  =+(A,-;A,-;A, -4A4)Io+ ( A ,  - i A 2 - a A 3 - i A 4 ) 1 1 +  (2A2+ A 3 + $ A 4 +  A S ) I s  

= +A;Z, + A ;zI + A \ I ~ .  (4.11) 

Using equations (3.4), (3.7)-(3.10), (4.11) and appendix 1 we find the LO RGE for the 
scalar quartic couplings 

dAh 1 83 (2  91 I r 49 r r 113 r2 49 t I - (-A0 + a A o A l  + g A o A s + = A ,  + ~ A l A ~ + ~ A ; 2  -24g2Ab-3g4) 
d t  47r2 

dA; 1 - (3A&A’, +YA‘,’+2A:A\ -&A? -24g2A: +9g4) 
d t  47r2 

dAi 1 - (3A LA - 2A ;’ +;A ; A \  + $ A t  - 24g2A; + 27g4) 
dt  47r2 

and the LO RGE for the gauge coupling constant (3.3) becomes 

(4.12) 

(4.13) 

with bo> 0 for N f s  21. 
It can also be shown numerically that cases (iii) and (iv) are not asymptotically free. 

5. Conclusion 

LO RGE for the quartic scalar couplings have been constructed in standard SU(N) 
gauge theories containing fermions in Nf fundamental representations and scalar fields 
in self-dual fourth-rank (symmetric and antisymmetric) tensor representations. These 
RGE are needed for studying whether the gauge theories can be asymptotically or 
temporarily free in the presence of the Higgs phenomenon. 

We have found that for T = + 1, N 3 6 and 7r = -1, N 3 9, the contribution of the 
scalar field to the gauge coupling RGE destabilises asymptotic freedom, even when 
there are Nf 6 2, i.e. Nf d 4 fermions, respectively. 

In order to investigate the physically interesting case of broken QCD with 27 scalars, 
we have restricted ourselves to those special cases where the most general quartic 
Higgs potential can be described in terms of maximally four independent quartic 
invariants. These cases are: SU(2), SU(3), SU(4) and SU(5) with 5, 27-, 20- and 
75-dimensional representations of scalars, respectively. For SU(2) it is obvious from 
(4.3) that asymptotic freedom cannot be maintained. It can be shown numerically that 
the same result holds for the remaining three cases, as is expected. 

Finally we note that it is interesting to perform a detailed phenomenological analysis 
for broken QCD with 27 scalars using our RGE (4.6), as well as all conditions which 
ensure SO(3) to be an absolute minimum. This analysis is necessary to test whether 
this model of broken QCD is still compatible with present experiments. Results of this 
investigation will be presented elsewhere. 
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Appendix 1 

Here we give the results of our calculation for 60 air coefficients, which enter (3.4) 
and (3.10). The indices q and r are restricted to 0, 1 ,2 ,  5. (In the calculation we have 
used completeness relation (2.9).) 

a&=&i(T)+2 a& = a&,= a&= a&,= a&, = 0 

ail  = ail  = a i ,  = ail  = 0 
2 

a ; , = N ( N + . r r ) - -  4N + aAl = 3 N+7r (N+I r ) (N+27r )  

ai2=6 aA2 = a& = a& = a h  = 0 
1 5 7rN+4 

ag2 =- ( ( N +  7 r ) 2 - - +  
2 2 ( N + T ) ( N + 2 7 r )  

8 ( N +  a)’+36 
a’ - 

11 - + ( N + 7 r ) 2 ( ~  + zT)2 

14 
8 +  

N(N+.rr )  4 N  + -- 
2 N+7r (N+27r)2 (N+I r ) (N+27r )  a : ,  = 

4( N 2  + 21rN + 10) a:, = o  a5 -- 8 
a’ - 16 

- ( N  + 27r)2 1 1 -  ( N + T ) ( N + 2 I r ) 2  
a’ - - (N+277)2 

4( N + T)’+ 18 2 12 
ay2 = ( N +  7r)2(N+27r)2 a:2  = (N+27r)’ a2 - 2+2 l 2  - (N+27r)  

2 (3N +41r) 
( N  +277)’ 

a4 - -  3 ~ ( 2 2 +  1 2 ~ N  - N 2 )  
ai2 = --+ 12 - 2 ( N + I r ) ( N + 2 7 r y  

N (  N +  37r) + 37r( N - 5Ir) 
a:2 = 

N+27r (N+7r)(N+27r)’ 

N + T  4 
a i 5 = - - -  2 N+21r  a;5 = 0 

N (  N +  31r)(  N 2 +  3 w N +  6) - 4 
ay5 = 

( N +  a)(N+297)2 

4(2N+37r) a 4  - 8 a3 -- 
( N  +27r)* Is- ( N + 2 7 r y  15 - 

N (  N +  3~)( N2 + 27rN - 8) +24 
4( N + 2 ~ ) ’  

a:,=1+ 

2 ( N +  7ry+9 1 1 
a o  - _  a:,=-+ 

22 - :+4( N + T ) ~ (  N + 27r)’ 16 8(N+27r)’ 
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( N  +277)’ 
( N + ~ I T ) ,  1 v ( 3 3 + 7 n N - 8 N 2 )  --+ 

4 2 4 ( N + v ) ( N + 2 ~ ) ’  
a:, = 

ai2 = --- 2 r N - 7  
l +  

N+377 
2 4 ( N + . r r ) ( N + 2 ~ ) ’  8 2(N+277) 4 ( N + . r r ) ( N + 2 ~ ) ’  

a;’=-- 3(2N2+ r N  -4) 

2(3 N + 477) 
( N  + 277)’ 

a:5 = 0 a:5= N+377- 
T N - 5  

N + T +  a’5 = ! ( ( N  + T ) (  N + 277)’ 

4N+777 N 2 - 1  1 N (  N + T ) (  N + 3 ~ ) ~ + 2 0  
2( N + 277)’ a;5 = (N+277)’ a’5=4+ 8 ( N + 2 ~ ) ’  

ai5 = - 

a:5 = 
4 

a i 5 = 1 +  
1 

a: ,=-  
N (  N + 377)(3 N + 277)+,l+ 2 

16( N +277) 8 (N+277)’ 8 ( N  + 2 ~ ) ’  

2 
U 4  --- 

N+277 ai5 = 5 5  - 
N 

4( N +277) 

N ( N + - r r ) ( N + 2 r )  N + 4 w  7 N + l O r  +-- 
64 16 4 ( N + 2 ~ ) , ’  

a:5 = 

We note the regularity of these expressions, namely that all of them can be written as 
ratios of homogeneous polynomials in N and T (with v2 = 1). We have also checked 
the self-consistency of all of the above coefficients; namely for cases with less than 
four independent quartic invariants, there exists a number of constraints on the above 
presented coefficients. Using the relations between invariants (given in appendix 2), 
one can easily check that for (SU(2), .rr=+l),  SU(4), T =  -1) and (SU(5), ~ = - l )  
there exist 9, 14 and 12 constraints, respectively, which are satisfied. 

The remaining 66 coefficients in (3.10) are necessary for constructing the RGE (3.4), 
when N 2 4, 7~ = +1 and N 3 6, IT = -1. Since the appropriate equations are not of 
immediate physical interest, and since the required calculations are very lengthy, we 
have omitted them. 

Appendix 2 

Here we present the relations between quartic invariants [ l l]  for the four cases of 
special interest: 

(i) SU(2) I T = + l  d ( T ) = 5  

I3 = Z4 = 0. Io = 21, = 21, = 21, 

(ii) SU(3) 77=+l d (  T) = 27 

z3 = QI, - a i ,  

I, = &( 3 I o  - 21,) 

I~=-&Io-QIl+215 1 3 = - Q ~ o - a ~ , + ~ 5  

14=;Io+12-215. 

(iii) SU(4) 77=- l  d (  T) = 20 

(iv) W 5 )  77=-l d ( T ) = 7 5  

13= 14=Q(Io-211) 
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The group theoretical origin of these relations is as follows: 
(a) There are two bilinear combinations of the initial tensor T 

( T;: T;; -traces) 

and (A2.5) 

( T;: TZ; + TT$ TgL -traces) 

which transform in the same way as T (with 7~ symmetry). They are linearly dependent 
if the symmetric part of the Kronecker product, ( 7~ x 7 ~ ) ~ ~ , , , ,  , contains one n representa- 
tion only. An appropriate relation between these two bilinear combinations (A2.5), 
results in one relation between cubic invariants and two relations between quartic 
invariants. This happens for SU(2) with 7~ = +1 and for SU(4) and SU(5) with 7~ = -1. 

(A2.6) 

which transforms as self-dual fourth-rank tensor, but with opposite symmetry (-7~). 
If this representation does not appear in the symmetric part of the ( 7 ~  x 7 ~ )  Kronecker 
product (or if it is a trivial zero dimensions), this combination (A2.6) is identically 
zero. In this case we obtain one additional relation between quartic invariants. This 
happens for SU(2) and SU(3) with 7~ = +l.  

(b) There is also one bilinear combination: 

( T ; :  T f ;  - TT$E TgL -traces) 

(c) There is also one bilinear combination of the initial tensor T 

T;;T;:- N - ' Q S ;  (A2.7) 

which transforms as an adjoint representation. If the adjoint representation does not 
appear in the symmetric part of ( 7 ~  x n)  Kronecker product, the above combination 
(A2.7) vanishes identically. In this case we obtain again one new relation between 
quartic invariants. This happens for SU(2), 7~ = +1 and for SU(4), n = -1.  

(d) Finally, there is one relation which is a direct consequence of the invariant 
Levi-Civita tensor ( E  symbol); namely, starting from bilinear combination (of the 
initial tensor) with four contra- and four covariant indices we can construct, using E 

tensors, a new self-dual tensor with less than four CO- and four contravariant indices. 
In this case we obtain again one new relation between quartic invariants. This happens 
when N < 8  for n=-1, and when N < 4  for . r r = + l .  
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